30 research outputs found

    Deficient crisis-probing practices and taken-for-granted assumptions in health organisations

    Get PDF
    The practice of crisis-probing in proactive organisations involves meticulous and sustained investigation into operational processes and management structures for potential weaknesses and flaws before they become difficult to resolve. In health organisations, crisis probing is a necessary part of preparing to manage emerging health threats. This study examined the degree of pre-emptive probing in health organisations and the type of crisis training provided to determine whether or not they are prepared in this area. This evidence-based study draws on cross-sectional responses provided by executives from chiropractic, physiotherapy, and podiatry practices; dental and medical clinics; pharmacies; aged care facilities; and hospitals. The data show a marked lack of mandatory probing and a generalised failure to reward crisis reporting. Crisis prevention training is poor in all organisations except hospitals and aged care facilities where it occurs at an adequate frequency. However this training focuses primarily on natural disasters, fails to address most other crisis types, is mostly reactive and not designed to probe for and uncover key taken-for-granted assumptions. Crisis-probing in health organisations is inadequate, and improvements in this area may well translate into measurable improvements in preparedness and response outcomes

    In vitro comparison of four treatments which discourage infestation by head lice

    Get PDF
    Products which discourage the transmission of head lice are appealing; however, few studies have tested this concept. This study aims to test the efficacy of four commercial products which claim to discourage infestation by head lice; MOOV Head Lice Defence Spray (MOOV), Wild Child Quit Nits Head Lice Defence Spray (Wild Child), 100% Natural Head Lice Beater (Lice Beater) or Lysout Natural Anti-Lice Spray (Lysout). An in vitro challenge test was used. Briefly, one half of a filter paper lining the base of a petri dish was treated with the test product. Lice were then introduced to the centre of the dish, which was covered and placed in the dark at 20Β°C for 30Β min. The number of lice on the treated and untreated sides of the filter paper was then counted after 2, 4 and 8Β h post-application. MOOV was significantly more effective at discouraging the transmission of lice than the water control (p < 0.01), while Wild Child and Lysout were not at all time points. Lice Beater was significantly worse than the water control after 2Β h (p < 0.01), while there was no difference after 4 and 8Β h. MOOV was found to perform significantly better than Wild Child (p < 0.05) and Lice Beater (p < 0.05) at all time points. It also performed significantly better than Lysout at 2 (p < 0.05) and 8Β h (p < 0.05), but not 4Β h. MOOV offers the best efficacy and consistency of performance of the four products tested to discourage the transmission of head lice

    A hierarchical network approach for modeling Rift Valley fever epidemics with applications in North America

    Get PDF
    Rift Valley fever is a vector-borne zoonotic disease which causes high morbidity and mortality in livestock. In the event Rift Valley fever virus is introduced to the United States or other non-endemic areas, understanding the potential patterns of spread and the areas at risk based on disease vectors and hosts will be vital for developing mitigation strategies. Presented here is a general network-based mathematical model of Rift Valley fever. Given a lack of empirical data on disease vector species and their vector competence, this discrete time epidemic model uses stochastic parameters following several PERT distributions to model the dynamic interactions between hosts and likely North American mosquito vectors in dispersed geographic areas. Spatial effects and climate factors are also addressed in the model. The model is applied to a large directed asymmetric network of 3,621 nodes based on actual farms to examine a hypothetical introduction to some counties of Texas, an important ranching area in the United States of America (U.S.A.). The nodes of the networks represent livestock farms, livestock markets, and feedlots, and the links represent cattle movements and mosquito diffusion between different nodes. Cattle and mosquito (Aedes and Culex) populations are treated with different contact networks to assess virus propagation. Rift Valley fever virus spread is assessed under various initial infection conditions (infected mosquito eggs, adults or cattle). A surprising trend is fewer initial infectious organisms result in a longer delay before a larger and more prolonged outbreak. The delay is likely caused by a lack of herd immunity while the infections expands geographically before becoming an epidemic involving many dispersed farms and animals almost simultaneously

    Man Bites Mosquito: Understanding the Contribution of Human Movement to Vector-Borne Disease Dynamics

    Get PDF
    In metropolitan areas people travel frequently and extensively but often in highly structured commuting patterns. We investigate the role of this type of human movement in the epidemiology of vector-borne pathogens such as dengue. Analysis is based on a metapopulation model where mobile humans connect static mosquito subpopulations. We find that, due to frequency dependent biting, infection incidence in the human and mosquito populations is almost independent of the duration of contact. If the mosquito population is not uniformly distributed between patches the transmission potential of the pathogen at the metapopulation level, as summarized by the basic reproductive number, is determined by the size of the largest subpopulation and reduced by stronger connectivity. Global extinction of the pathogen is less likely when increased human movement enhances the rescue effect but, in contrast to classical theory, it is not minimized at an intermediate level of connectivity. We conclude that hubs and reservoirs of infection can be places people visit frequently but briefly and the relative importance of human and mosquito populations in maintaining the pathogen depends on the distribution of the mosquito population and the variability in human travel patterns. These results offer an insight in to the paradoxical observation of resurgent urban vector-borne disease despite increased investment in vector control and suggest that successful public health intervention may require a dual approach. Prospective studies can be used to identify areas with large mosquito populations that are also visited by a large fraction of the human population. Retrospective studies can be used to map recent movements of infected people, pinpointing the mosquito subpopulation from which they acquired the infection and others to which they may have transmitted it

    A Sub-Microscopic Gametocyte Reservoir Can Sustain Malaria Transmission

    Get PDF
    Novel diagnostic tools, including PCR and high field gradient magnetic fractionation (HFGMF), have improved detection of asexual Plasmodium falciparum parasites and especially infectious gametocytes in human blood. These techniques indicate a significant number of people carry gametocyte densities that fall below the conventional threshold of detection achieved by standard light microscopy (LM).To determine how low-level gametocytemia may affect transmission in present large-scale efforts for P. falciparum control in endemic areas, we developed a refinement of the classical Ross-Macdonald model of malaria transmission by introducing multiple infective compartments to model the potential impact of highly prevalent, low gametocytaemic reservoirs in the population. Models were calibrated using field-based data and several numerical experiments were conducted to assess the effect of high and low gametocytemia on P. falciparum transmission and control. Special consideration was given to the impact of long-lasting insecticide-treated bed nets (LLIN), presently considered the most efficient way to prevent transmission, and particularly LLIN coverage similar to goals targeted by the Roll Back Malaria and Global Fund malaria control campaigns. Our analyses indicate that models which include only moderate-to-high gametocytemia (detectable by LM) predict finite eradication times after LLIN introduction. Models that include a low gametocytemia reservoir (requiring PCR or HFGMF detection) predict much more stable, persistent transmission. Our modeled outcomes result in significantly different estimates for the level and duration of control needed to achieve malaria elimination if submicroscopic gametocytes are included.It will be very important to complement current methods of surveillance with enhanced diagnostic techniques to detect asexual parasites and gametocytes to more accurately plan, monitor and guide malaria control programs aimed at eliminating malaria

    Coffee and its waste repel gravid Aedes albopictus females and inhibit the development of their embryos

    Get PDF

    The carbon footprint of Australian ambulance operations

    No full text
    Objective: To determine the greenhouse gas emissions associated with the energy consumption of Australian ambulance operations, and to identify the predominant energy sources that contribute to those emissions. Methods: A two-phase study of operational and financial data from a convenience sample of Australian ambulance operations to inventory their energy consumption and greenhouse gas emissions for 1 year. State- and territory-based ambulance systems serving 58% of Australia's population and performing 59% of Australia's ambulance responses provided data for the study. Results: Emissions for the participating systems totalled 67390 metric tons of carbon dioxide equivalents. For ground ambulance operations, emissions averaged 22kg of carbon dioxide equivalents per ambulance response, 30kg of carbon dioxide equivalents per patient transport and 3kg of carbon dioxide equivalents per capita. Vehicle fuels accounted for 58% of the emissions from ground ambulance operations, with the remainder primarily attributable to electricity consumption. Emissions from air ambulance transport were nearly 200 times those for ground ambulance transport. Conclusion: On a national level, emissions from Australian ambulance operations are estimated to be between 110000 and 120000 tons of carbon dioxide equivalents each year. Vehicle fuels are the primary source of emissions for ground ambulance operations. Emissions from air ambulance transport are substantially higher than those for ground ambulance transport. Β© 2012 The Authors. EMA Β© 2012 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine

    Estimating the life cycle greenhouse gas emissions of Australian ambulance services

    No full text
    Emergency medical services, or 'ambulance services', are a vehicle-intense component of the health sector that could contribute to that sector's emissions reduction efforts. This analysis uses data from an inventory of ambulance service Scope 1 (arising from direct energy consumption) and Scope 2 (arising from purchased energy consumption) emissions, along with publicly available expenditure data and emissions multipliers derived from economy-wide input-output tables, to estimate the life cycle greenhouse gas emissions of Australian ambulance services. Total emissions are estimated at between 216,369 and 546,688 t CO2e annually, and represent between 1.8% and 4.4% of total Australian health sector emissions. Approximately 20% of ambulance service emissions arise from direct consumption of vehicle fuels (diesel and petrol) and aircraft fuels, with 22% arising from electricity consumption, and 58% arising from Scope 3 (e.g., supply chain; waste disposal) processes. Incorporating alternative fuels and higher efficiency vehicles into Australian ambulance services' vehicle fleets could reduce their direct greenhouse emissions, but broader efforts targeting reduced electricity consumption, greener electricity generation, and environmentally friendly purchasing practices will be required to substantially reduce their total carbon footprint. Β© 2012 Elsevier Ltd. All rights reserved

    Higher energy prices are associated with diminished resources, performance and safety in Australian ambulance systems

    No full text
    Objective: To evaluate the impact of changing energy prices on Australian ambulance systems. Methods: Generalised estimating equations were used to analyse contemporaneous and lagged relationships between changes in energy prices and ambulance system performance measures in all Australian State/Territory ambulance systems for the years 2000-2010. Measures included: expenditures per response; labour-to-total expenditure ratio; full-time equivalent employees (FTE) per 10,000 responses; average salary; median and 90th percentile response time; and injury compensation claims. Energy price data included State average diesel price, State average electricity price, and world crude oil price. Results: Changes in diesel prices were inversely associated with changes in salaries, and positively associated with changes in ambulance response times; changes in oil prices were also inversely associated with changes in salaries, as well with staffing levels and expenditures per ambulance response. Changes in electricity prices were positively associated with changes in expenditures per response and changes in salaries; they were also positively associated with changes in injury compensation claims per 100 FTE. Conclusion: Changes in energy prices are associated with changes in Australian ambulance systems' resource, performance and safety characteristics in ways that could affect both patients and personnel. Further research is needed to explore the mechanisms of, and strategies for mitigating, these impacts. The impacts of energy prices on other aspects of the health system should also be investigated. Β© 2013 The Authors
    corecore